World Cup 2014: did you recorded a drop in the network energy use?

Netherlands_Spain2014Large events can have a serious impact on IT infrastructure. A great example of this is the current football World Cup 2014.

RIPE NCC, one of five Regional Internet Registries (RIRs), does a great job with collecting data of the network traffic during the event. In collaboration with the European Internet Exchange Association (Euro-IX) they follow the Internet Exchange Point (IXP) traffic during the championship.

Two examples from their research. The following graphs shows in red the traffic of the match day and the same day of the week in the weeks before as grey lines. The game times are indicated as grey rectangles in the background.

 The Netherlands – Spain

The traffic volume during the Netherlands-Spain game differs 256 Terabytes to the week before!

TheNetherlands_Spain2014

Traffic statistics at the Amsterdam Internet Exchange (AMS-IX).

 

Cameroon – Brazil

Cameroon_Brazil2014

Traffic statistics at the PTT Metro IXP in Sao Paulo, Brazil.

These traffic drops makes you wonder how much energy was saved by these games.

More information about the network traffic can be found at RIPE NCC and more information will follow during the World Cup.

Data Center 2.0 – The Sustainable Data Center, Now Available!

Data Center 2.0 – The Sustainable Data Center is now available. Data Center 2.0

The book is showing up on the websites of Amazon and will soon starts to pop up on websites of other  E-tailers’ .

Data Center 2.0 – The Sustainable Data Center is an in-depth look into the steps needed to transform modern-day data centers into sustainable entities.

See the press release:

Some nice endorsements were received:

“Data Center 2.0, is not so much about technology but about people, society and economic development. By helping readers understand that even if Data Centers, enabling the Digital economy, are contributing a lot to energy saving, they need to be sustainable themselves; Rien Dijkstra is on the right track. When explaining how to build sustainable Data Centers, through multi disciplinary approach, breaking the usual silos of the different expertise, Rien Dijkstra is proposing the change of behavior needed to build sustainable Data Centers. Definitely it is about people, not technology.” 

Paul-Francois Cattier, Global Senior Vice-President Data Center – Schneider Electric

“In Data Center 2.0 The Sustainable Data Center author Rien Dijkstra has gone several steps further in viewing the data center from the perspective of long term ownership and efficiency in combination with treating it as a system. It’s an excellent read with many sections that could be extracted and utilized in their own right. I highly recommend this read for IT leaders who are struggling with the questions of whether to add capacity (co-locate, buy, build, or lease) or how to create a stronger organizational ownership model for existing data center capacity. The questions get more complex every year and the risks more serious for the business. The fact that you’re making a business critical decision that must stand the test of technology and business change over 15 years is something you shouldn’t take lightly.” 

Mark Thiele, President and Founder Data Center Pulse

“Data centers used to be buildings to house computer servers along with network and storage systems, a physical manifestation of the Digital Economy. Internet of Things, the digitization of about everything in and around us, brings many profound changes. A data center is the place where it all comes together. Physical and digital life, fueled by energy and IT, economical and social demands and needs and not to forget sustainability considerations. Sustainable data centers have a great potential to help society to optimize the use of resources and to eliminate or reduce wastes of capital, human labor and energy. A data center in that sense is much more than just a building for servers. It has become a new business model. Data center 2.0 is a remarkable book that describes the steps and phases to facilitate and achieve this paradigm.” 

John Post, Managing Director – Foundation Green IT Amsterdam region

Preview Data Center 2.0 – The Sustainable Data Center

Data Center 2.0: The Sustainable Data Center is an in-depth look into the steps needed toData Center 2.0 transform modern-day data centers into sustainable entities.

To get an impression of the book you can read the prologue right here.

Prologue

In large parts of the world, computers, Internet services, mobile communication, and cloud computing have become a part of our daily lives, professional and private. Information and communication technology has invaded our life and is recognized as a crucial enabler of economic and social activities across all sectors of our society. The opportunity of anytime, anywhere being connected to communicate and interact and to exchange data is changing the world.

During the last two decades, a digital information infrastructure has been created whose functioning is critical to our society, governmental, and business processes and services, which depend on computers. Data centers, buildings to house computer servers along with network and storage systems, are a crucial part of this critical digital infrastructure. They are the physical manifestation of the digital economy and the virtual and digital information infrastructure, were data is processed, stored, and transmitted.

A data center is a very peculiar and special place. It is the place were different worlds meet each other. It is a place where organizational (and individual) information needs and demands are translated in bits and bytes that are subsequently translated in electrons that are moved around the world. It is the place where the business, IT, and energy worlds come together. Jointly they form a jigsaw puzzle of stakeholders with different and sometimes conflicting interests and objectives that are hard to manage and to control.

Electricity is the foundation of all digital information processing and digital services that are mostly provided from data centers. The quality and availability of the data center stands or falls with the quality and availability of the power supply to the data center.

For data centers, the observation is made that the annualized costs of power-related infrastructure has, in some cases, grown to equal the annualized capital costs of the IT equipment itself. Data centers have reached the point that the electricity costs of a server over its lifetime will equal or pass the price of the hardware. Also, it is estimated that data centers are responsible for about 2% of the total world electricity consumption.

It is therefore easy to understand why the topic of electricity usage of data centers is a subject of discussion.

Electricity is still mostly generated with fossil fuel-based primary energy resources such as coal, gas, and oil. But this carbon-constrained power sector is under pressure. Resilience to a changing climate makes the decarburization of these energy sources mandatory to ensure sustainability.

From different parts of society the sustainability of data centers is questioned. Energy efficiency and indirect CO2 emissions caused by the consumption of carbon-based electricity are criticized.

The data center industry is working hard on these issues. According to the common view, it comes down to implementing technical measures. The idea is that more efficient power usage of servers, storage and network components, improved utilization, and better power and cooling management in data centers will solve the problems.

This idea can be questioned. Data centers are part of complex supply chains and have many stakeholders with differing perspectives, incomplete, contradictory, and changing requirements and complex interdependencies. In this situation there is no simple, clear definition of data center efficiency, and there is no simple right or optimal solution.

According to the Brundtland Commision of the United Nations, sustainability is “to meet the needs of the present without compromising the ability of future generations to meet their own needs.”

Given the fact that we are living in a world with limited resources and the demand for digital infrastructure is growing exponentially, there will be limits that will be encountered. The limiting factor to future economic development is the availability and the functioning of natural capital. Therefore, we need a new and better industrial model.

Creating sustainable data centers is not a technical problem but an economic problem to be solved.

A sustainable data center should be environmentally viable, economically equitable, and socially bearable.

This book takes a conceptual approach to the subject of data centers and sustainability. The proposition of the book is that we must fundamentally rethink the “data center equation” of “people, planet, profit” in order to become sustainable.

The scope of this search goes beyond the walls of the data center itself. Given the great potential of information technology to transform today’s society into one characterized by sustainability what is the position of data centers?

The data center is the place where it all comes together: energy, IT, and societal demands and needs.

Sustainable data centers have a great potential to help society to optimize the use of resources and to eliminate or reduce wastes of capital, human labor and energy.

The idea is that a sustainable data center is based on economics, organization, people and technology. This book offers at least multiple views and aspects on sustainable data centers to allow readers to gain a better understanding and provoke thoughts on how to create sustainable data centers.

Creating a sustainable data center calls for a multidisciplinary approach and for different views and perspectives in order to obtain a good understanding of what is at stake.

The solution is, at the end of the day, a question of commitment.

Data Center 2.0 – The Sustainable Data Center (Update)

Data Center 2.0: The Sustainable Data Center is an in-depth look into the steps needed to transform modern-day data centers into sustainable entities. The book will be published at the beginning of the summer.

To get an impression see the following slide deck.

DC20_Flyer_Blog.001 DC20_Flyer_Blog.002 DC20_Flyer_Blog.003 DC20_Flyer_Blog.004 DC20_Flyer_Blog.005 DC20_Flyer_Blog.006 DC20_Flyer_Blog.007 DC20_Flyer_Blog.008 DC20_Flyer_Blog.009

Data Center 2.0 – The Sustainable Data Center

DC20_SustainableDataCenter
Currently busy with the final steps to get the forthcoming book ‘Data Center 2.0 – The Sustainable Data Center’ (ISBN 978-1499224689) published at the beginning of the summer.

Some quotes from the book:

“A data center is a very peculiar and special place. It is the place where different worlds meet each other. A place where organizational (and individual) information needs and demands are translated in bits and bytes that are subsequently translated in electrons that are moved around the world. It is the place where the business, IT and energy world come together. Jointly they form a jigsaw puzzle of stakeholders with different and sometimes conflicting interests and objectives that are hard to manage and to control.Data Center 2.0

Given the great potential of Information Technology to transform today’s society into one characterised by sustainability what is the position of data centers?

……..

The data center is the place were it all comes together: energy, IT and societal demands and needs.

…….

A sustainable data center should be environmentally viable, economically equitable, and socially bearable. To become sustainable, the data center industry must free itself from the shackles of 19th century based ideas and concepts of production. They are too simple for our 21th century world.

The combination of service-dominant logic and cradle-to-cradle makes it possible to create a sustainability data center industry.

Creating sustainable data centers is not a technical problem but an economic problem to be solved.”

The book takes a conceptual approach on the subject of data centers and sustainability. It offers at least multiple views and aspects on sustainable data centers to allow readers to gain a better understanding and provoke thoughts on how to create sustainable data centers.

The book has already received endorsements of Paul-Francois Cattier Global Senior, Vice President Data Center of Schneider Electric and John Post, Managing Director of Foundation  Green IT Amsterdam region.

Table of contents

1 Prologue
2 Signs Of The Time
3 Data Centers, 21th Century Factories
4 Data Centers A Critical Infrastructure
5 Data Centers And The IT Supply Chain
6 The Core Processes Of A Data Center
7 Externalities
8 A Look At Data Center Management
9 Data Center Analysis
10 Data Center Monitoring and Control
11 The Willingness To Change
12 On The Move: Data Center 1.5
13 IT Is Transforming Now!
14 Dominant Logic Under Pressure
15 Away From The Dominant Logic
16 A New Industrial Model
17 Data Center 2.0

Data center CO2 emissions

There have been some debate about the source of electricity a data center is using and the CO2 emissions it is causing.

Recently some interesting figures came available by the International Energy Agency. These are the CO2 emissions per kWh electricity generation. Published in the 2013 edition of “CO2 emissions from fuel combustion – Highlights”.

It isn’t easy to find consistent and complete time series. A lot of the data that can be found is using different definitions and/or different time periods what makes it difficult to aggregate these figures. IEA has published time series for the period 1990 – 2011.

To make some comparisons a selection from different parts of the world is showed in table 1. Remarkable differences in CO2 emissions can be found. Some countries show a huge decrease of CO2/kwH emission during the period 1990 – 2011 whereas others show an increase. Also within a region the differences are considerable. Zooming in on the E.U. countries with Tier 1 data center markets; United Kingdom, France, Germany and The Netherlands, (with the DC hubs London, Paris, Frankfurt and Amsterdam) we see a CO2/kwH reduction of 34.4%, 41.9%, 21.4% and 33.4%. Differences in emissions and emissions trends are caused by different energy policies and different compositions of the power plant fleet.

Table 1. CO2 emission per kWh from electricity generation, source IEA.

  2011kg CO2 /kwH Difference 1990 -2011

%

E.U. 0.352 -21.4
United Kingdom 0.441 -34.4
France 0.061 -41.9
Germany 0.477 -21.4
The Netherlands 0.404 -33.4
Russian Federation 0.437 7.6
U.S.A. 0.503 -13.6
Canada 0.167 -14.8
Australia 0.823 0.7
Singapore 0.500 -44.9
Japan 0.497 14.3
Korea 0.545 4.8
India 0.856 5.4
China 0.764 -14.5

 

The figures that are showed are averages. The CO2 emission of a data center depends on the power plants that are really used to deliver electricity to the data center. Depending on the electricity demand the power supplier will assign different power plants. The assignment of power plants is according to their production efficiencies (short-run marginal costs of production) and capacity and this production mix will influence the CO2 emission per kwH.

CO2 emission per server

To get an impression of the CO2 emission per server in different parts of the world we making use of the report ”Estimating total power consumption by servers in the U.S. and the world” of J.G. Koomey of Stanford University, the power usage of low, mid and high range server are estimated on 180, 420, and 4800 Watt. This will lead to the figures in table 2 based on a 24 hours x 365 days usage.

Table 2. Yearly CO2 emission per server.

Kg CO2/year Low range server Medium range server High range server
E.U. 555 1295 14801
United Kingdom 695 1623 18543
France 96 224 2565
Germany 752 1755 20057
The Netherlands 637 1486 16987
Russian Federation 689 1608 18375
U.S.A. 793 1851 21150
Canada 263 614 7022
Australia 1298 3028 34606
Singapore 788 1840 21024
Japan 784 1829 20898
Korea 859 2005 22916
India 1350 3149 35993
China 1205 2811 32125

 

Data center use case

What do all these figures mean for a data center? Lets take for example a data center of 1000 servers with a PUE of 1.8. In this case we use a server mix of 95% low range, 4% mid range and 1% high range servers. Besides servers the data center will also use storage and network components. The ratio of the energy use of servers versus the energy use of storage and network components is set to 75:15:10.

We can define a worst-case scenario when electricity is created with conventional coal combustion; in that case 1kW of electricity is equivalent to 1 kg CO2 emission. For the data center in this use case, that would be an upper limit of 4957 ton CO2 per year. In reality power suppliers are using a mix of different energy sources. As we can see in table 3, the lowest emission is 302 ton and the highest emission is 4244 ton. A difference with a factor 14!

Table 3. CO2 emission of a data center.

Metric ton CO2/year Servers Storage Network Data center
E.U. 727 145 97 1745
United Kingdom 911 182 121 2186
France 126 25 17 302
Germany 985 197 131 2365
The Netherlands 835 167 111 2003
Russian Federation 903 181 120 2166
U.S.A. 1039 208 139 2494
Canada 345 69 46 828
Australia 1700 340 227 4080
Singapore 1033 207 138 2479
Japan 1027 205 137 2464
Korea 1126 225 150 2702
India 1768 354 236 4244
China 1578 316 210 3787

 

Zero emission

There is of course the alternative case of zero CO2 emissions if the electricity supply is completely based on nuclear, hydro or renewable energy. Some countries like Iceland, Norway, Sweden and Switzerland have extreme low CO2/kwH emission (1, 13, 17 and 30 gram).

 

The fundamental problem of IT and Data center e-waste

The global e-waste problem is escalating, by 2017, world volumes of end-of-life e-products is expected to be 33% higher than 2012 according to a new study by the EERecyclingSolving the E-Waste Problem (StEP) Initiative.

Based on current trends E-waste will grow from 48.9 million metric tons in 2013 to 65.4 million tons in 2017.

StEP Initiative has created an interactive map. This map has details on each country’s e-waste numbers and regional or federal rules about how to dispose of the waste.

It shows that in 2012 China and the United States topped the world’s totals in market volume of EEE and e-waste. China put the highest volume of EEE on the market in 2012 – 11.1 million tons, followed by the US at 10 million tons.

However, an e-waste per capita gives a different view on e-waste production. Here the US shows an average 29.8 kg a person. Where as China’s shows a per capita figure of 5.4 kg.

A lot of the electronic devices are IT and Telecommunications Equipment and are used by corporate consumers. So some way or another these corporate consumers are taking part in this explosive growth of e-waste.

We all know that e-waste is serious business and if not proper handled it can cause severe environmental damage and harm to human health. (see When your IT equipment dies, where does it go? )

And there is also another not so well known side of the e-waste coin. E-waste is also about wasting rare earth metals. Metals which are essential for IT equipment and are very costly to produce. (see  Rare earths, E-waste and Green IT)

So there are some moral, economical and financial incentives to stop this explosive growth of e-waste.

As stated in the Green Grid (TGG) white paper the global community is in need of a user-based metric to quantify how well a corporate consumer of IT equipment responsibly manages it once it has been used and is no longer useful to the corporate consumer.

The idea is that an organization must manage all of its material streams. When an object is obsolete  (“end of current use” (EOCU) or “end of life” (EOL)) there are three possible materials streams: reuse, recycling and waste (were waste represents material that is sent to final disposal (e.g., landfilling or incineration as treatment).

Therefore they introduced the Electronics Disposal Efficiency (EDE) Metric

EDE = Total weight of decommissioned IT equipment by known responsible entities /

            Total weight of decommissioned IT equipment

Where the reuse, recycle and waste material streams can be administrated separately.

Using this metric is a good start for creating awareness of the e-waste issue in a corporate environment but there is a fundamental problem.

E-waste is a symptom of an industrial production system inherited from the steam-driven days of the first industrial evolution 18th century. A linear, ‘Take-Make-Waste’ process where “materials are extracted from the earth’s crust, transported to manufacturing sites, used to produce products (all materials not part of end product are discarded as waste), than products are transported to users and finally, at the end-of-life, discarded as waste”.

The implicit assumption of this production system is that we have infinite resources. Now in the 21st century we should be know better, fossil fuels are limited, rare earth elements in electronic components are scarce, water is scarce. So by definition this classical way of producing is unsustainable.

In a cradle to cradle production system, all materials used in industrial or commercial processes fall into one of two categories: technical or biological nutrients. Technical nutrients are strictly limited to non-toxic, non-harmful synthetic materials that have no negative effects on the natural environment; they can be used in continuous cycles as the same product without losing their integrity or quality. In this way these materials can be used over and over.

CradleToCradle

A fundamental transition is needed. Instead of buying, consuming and wasting products one should try to buy services where products are used and recycled. In this circular economy model manufacturers retain the ownership of their products and, act as service providers—selling the use of products, not their one-way consumption as in the current industrial model of linear economy. This should be the fundamental solution to e-waste.

An utopian dream? Multinationals like Philips and InterfaceFLOR are already working with this concept by selling light-as-a-service or carpet-as-a-service and creating closed production loops.

(see Data Centers and Mount Sustainability and The as-a-Service Datacenter, a new industrial model)